
Efficient Top-k Edge Structural Diversity Search
Qi Zhang†, Rong-Hua Li†, Qixuan Yang†, Guoren Wang†, Lu Qin‡

†Beijing Institute of Technology, Beijing, China; ‡University of Technology, Sydney, Australia;
qizhangcs@bit.edu.cn; rhli@bit.edu.cn; qixuanyang@outlook.com; wanggrbit@126.com; Lu.Qin@uts.edu.au

Abstract—The structural diversity of an edge, which is mea-
sured by the number of connected components of the edge’s
ego-network, has recently been recognized as a key metric for
analyzing social influence and information diffusion in social
networks. Given this, an important problem in social network
analysis is to identify top-k edges that have the highest structural
diversities. In this work, we for the first time perform a
systematical study for the top-k edge structural diversity search
problem on large graphs. Specifically, we first develop a new
online search framework with two basic upper-bounding rules
to efficiently solve this problem. Then, we propose a new index
structure using near-linear space to process the top-k edge
structural diversity search in near-optimal time. To create such
an index structure, we devise an efficient algorithm based on
an interesting connection between our problem and the 4-clique
enumeration problem. In addition, we also propose efficient index
maintenance techniques to handle dynamic graphs. The results of
extensive experiments on five large real-life datasets demonstrate
the efficiency, scalability, and effectiveness of our algorithms.

I. INTRODUCTION

Online social networks such as Facebook, Twitter, and
WeChat have attracted much attention in recent years, and
they are becoming an important tool for human beings to
interact with each other and spread information in the real
life. A central question in online social network analysis is
the study of the spread of information on social networks.
Such an information diffusion procedure on social networks
is often termed as social contagion, which is similar as an
epidemic spreading process.

A recent study [1] reveals that the probability of social con-
tagion relies mainly on the number of connected components
in a user’s neighborhood, rather than depends on the number
of friends in the neighborhood. A connected component in a
user’s neighborhood represents a social context of the user, and
the number of social contexts is termed as structural diversity
[1]. As indicated in [1], if a user has a higher structural
diversity, he/she is more likely to participate in the social
contagion procedure. The analysis of structural diversities for
the users in a social network can be beneficial to a variety of
applications such as viral marketing, political campaign, and
promotion of health practices [1], [2].

Given the importance of structural diversity in network
analysis, Dong et al. [3] study the structural diversity for a
pair of vertices which is measured by the number of connected
components in their common neighborhood. Dong et al. show
that the structural diversity of a pair of vertices (u, v) has
important practical applications for random graph design and
friend suggestion in online social networks [3]. Inspired by this
work, we study the problem of finding the top-k edges in a
graph that have the highest structural diversities. The study of
the top-k edges with highest structural diversities can be useful
for many applications. For example, in social networks, the
edges with highest structural diversities play crucial roles in
promoting the information diffusion in the network, as those

edges contain diverse social contexts and thus can promote
the information spread over different social circles. In scien-
tific collaboration networks, the edges with highest structural
diversities may play important roles to improve collaborations
over different communities, because those high-structural-
diversity edges often connect multiple research communities
in the network. In Natural Language Understanding (NLU),
the edges with highest structural diversities indicate that the
pairs of words have diverse meanings. Identifying these edges
is very useful for analyzing and understanding the meanings
of the pairs of words in different semantic contexts, which is
a fundamental issue in NLU.

To solve the top-k edge structural diversity search prob-
lem, a straightforward algorithm is to calculate the structural
diversities for all edges and then selects the top-k results.
Such a straightforward algorithm, however, is very costly
for large graphs, because the total cost for calculating the
common neighborhood for each edge is very expensive in
large graphs. To efficiently compute the top-k edges, the
general idea of top-k structural diversity search algorithms
[2], [4] can be used which explores the vertices based on a
predefined ordering, and then applies some upper-bounding
rules to prune the unpromising vertices. Motivated by this,
we develop a new dequeue-twice online search framework
using two basic upper bounds to prune the search space. To
further improve the efficiency, we propose a novel index-based
solution using near-linear space to process the top-k edge
structural diversity search in near-optimal time. We present
an efficient index construction algorithm by establishing an
interesting connection between our problem and the 4-clique
enumeration problem. In addition, we also devise efficient
index maintenance techniques to handle dynamic graphs. To
the best of our knowledge, this is the first work that studies in-
dexing technique to solve the top-k structural diversity search
problem. In summary, we make the following contributions.
An online search algorithm. We develop a new dequeue-

twice online search framework with two basic upper bounds
to find the top-k edges with highest structural diversities. We
show that our new online search framework can significantly
prune the edges that are definitely not contained in the top-k
results.
An index-based algorithm. We develop a novel index struc-

ture, called ESDIndex, to efficiently support the top-k edge
structural diversity search. We show that the ESDIndex con-
sumes O(αm) space and can be used to process the top-k edge
structural diversity query in O(k logm + log n) time, where
α is the arboricity of the graph [5] which is typically very
small in real-life graphs [6], [7]. We present a new algorithm
with time complexity O((αγ(n) + logm)αm) to create the
ESDIndex based on an interesting connection between our
problem and the 4-clique enumeration problem. In addition,
we also propose a parallel index construction algorithm which

205

2020 IEEE 36th International Conference on Data Engineering (ICDE)

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00025
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

can achieve a high degree of parallelism. To handle dynamic
graphs, we develop new index maintenance techniques which
can efficiently update the ESDIndex when inserting/deleting
an edge in the graph.

Extensive experiments. We conduct comprehensive experi-
mental studies to evaluate the proposed algorithms using five
large real-world datasets. The results show that our index-
based algorithm processes the top-k edge structural diversity
search in less than 1 millisecond on a large graph with more
than 1 million vertices and 22 million edges, and it is at
least four orders of magnitude faster than the online search
algorithm. On the same large graph, the results also show
that the ESDIndex can be constructed in around 266 seconds
and the size of ESDIndex is around 5 times larger than the
graph size. We also examine two case studies on DBLP
and a word association network to evaluate the effectiveness
of our algorithms. The results indicate that the top-k edges
with the highest structural diversities are useful to find the
important edges that connect different communities in DBLP
and identify pairs of words with diverse meanings in the word
association network.
Organization. We introduce some important notations and
formulate our problem in Section II. Section III presents the
online search algorithm. The index-based solution is proposed
in Section IV. We develop the index maintenance techniques
in Section V. Section VI reports the experimental results. We
survey the related work in Section VII and conclude this work
in Section VIII.

II. PRELIMINARIES

Let G = (V,E) be an undirected and unweighted graph
with n = |V | vertices and m = |E| edges. We denote the
set of neighbors of a vertex u by N(u), i.e., N(u) = {v ∈
V |(u, v) ∈ E}, and the degree of u by d(u) = |N(u)|.
Similarly, the neighbors of an edge (u, v), denoted by N(uv),
is the set of vertices that are simultaneously adjacent to both
u and v, i.e., N(uv) = {w ∈ V |(u,w) ∈ E, (v, w) ∈ E}. For
a subset S ⊆ V , the subgraph of G induced by S is defined
as GS = (VS , ES) where VS = S and ES = {(u, v)|u, v ∈
S, (u, v) ∈ E}.

Given a graph G = (V,E), we are able to obtain a directed
graph ~G = (V, ~E) by assigning a direction for each edge in
G. For each vertex u in ~G, let N+(u) be the set of outgoing
neighbors of u in ~G, and d+(u) = |N+(u)| be the out-degree
of u. Denote by ~GS the subgraph of ~G induced by S. A
Directed Acyclic Graph (DAG) is a special directed graph
in which the directed edges do not form cycles. Clearly, any
undirected graph G = (V,E) can be converted to a DAG ~G
based on a total ordering on V [8]. Below, we introduce a
total ordering on V based on the degree of vertices.
Degree ordering. We define a total ordering ≺ on V by an
increasing ordering of the vertices by degrees (break ties by
vertex ID). Specifically, for any two vertices u and v in V ,
we say that u ≺ v if and only if (1) d(u) < d(v) or (2)
d(u) = d(v) and u has a smaller ID than v. Based on such
a degree ordering ≺, we can construct a directed graph ~G
by orientating each edge e ∈ E from the low-rank vertex to
the high-rank vertex, i.e., for each (u, v) ∈ E, we obtain a
directed edge (u, v) ∈ ~E with u ≺ v. It is easy to show that
such a directed graph ~G is a DAG. Consider a graph G shown
in Fig. 1(a). We can see that e ≺ f , as d(e) = d(f) and e

q

pb

ec

d f

g

h

i

j

k

u

v

a w

(a) An undirected graph

q

pb

ec

d f

g

h

i

j

k

u

v

a w

(b) A DAG generated by the degree ordering

Fig. 1. Running example

has a smaller ID than f . The DAG generated by the degree
ordering ≺ is shown in Fig. 1(b).

Below, we introduce a concept called edge ego-network,
which is important to define the edge structural diversity.

Definition 1: (Edge ego-network) For an edge (u, v) in G =
(V,E), the ego-network of (u, v), denoted by GN(uv), is a
subgraph of G induced by the vertex set N(uv).

Example 1: Consider a graph G in Fig. 1(a). Take the
edge (f, g) as an example, the set of its neighbors N(fg)
is {d, e, h, i}. The edge ego-network of (f, g) is GN(fg) =
({d, e, h, i}, {(d, e), (h, i)}) which is illustrated in the shaded
area of the graph in Fig. 1(a). �

Definition 2: (Edge structural diversity) Given a graph G
and an integer τ ≥ 1, the edge structural diversity of (u, v)
in G, denoted by score(u, v), is the number of connected
components in GN(uv) with size no less than τ , where GN(uv)

denotes the edge ego-network of (u, v).
Example 2: Reconsider the graph G in Fig. 1(a). The edge

ego-network GN(fg) of the edge (f, g) (see the shaded area
in Fig. 1(a)) contains 2 size-two connected components {d, e}
and {h, i}. If τ = 1 or τ = 2, we have score(f, g) = 2,
because the size of the two connected components is no less
than τ . Similarly, for τ = 3, score(f, g) = 0 as there is no
connected component with size greater than 3. �

Clearly, for each edge (u, v), we can perform a Breadth-
First Search (BFS) on GN(uv) to compute score(u, v). Based
on Definition 2, we formulate the top-k edge structural diver-
sity search problem as follows.
Problem formulation. Given a graph G and two integers k
and τ , the top-k edge structural diversity search problem is to
identify the k edges in G with the highest structural diversities
according to the component size threshold τ .

The following example illustrates the definition of our
problem.

Example 3: Reconsider the graph G in Fig. 1(a). Suppose
that k = 3 and τ = 2. Then, we can easily derive that
the three edges {(f, g), (h, i), (j, k)} are the answers, because
they have the highest structural diversities among all edges
(score(f, g) = score(h, i) = score(j, k) = 2). When k = 3 and
τ = 5, the answers are {(u, p), (u, q), (p, q)}. This is because
there is only one connected component with size greater than
5 in GN(up), GN(uq) and GN(pq), and the structural diversities
of the other edges in G are 0. �
Challenges. To solve the top-k edge structural diversity search
problem, a straightforward algorithm is to compute the struc-
tural diversity for each edge, and then picks the top-k edges
as the answers. Such an approach, however, is very costly for
large graphs. This is because the algorithm needs to explore the
edge ego-network GN(uv) to compute the structural diversity
for each edge (u, v). The total size of all edge ego-networks

206

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

can be very large, thus the straightforward algorithm is very
expensive for large graphs. Since we are only interested in the
top-k results, we do not need to compute all edges’ structural
diversities. The challenges of the problem are (1) how to
efficiently prune the edges that are definitely not contained
in the top-k results, and (2) how to efficiently compute the
structural diversities for all edges. To tackle these challenges,
we will propose a new online search algorithm which can
efficiently prune the unpromising edges and an index-based
algorithm which is able to answer the top-k results in near-
optimal time using near-linear space.

III. AN ONLINE TOP-k SEARCH FRAMEWORK

In this section, we propose an online top-k search frame-
work, called OnlineBFS, to solve our problem. The OnlineBFS
algorithm is based on a novel dequeue-twice search frame-
work with two different upper-bounding rules to prune the
search space. Below, we first introduce two upper bounds of
score(u, v) for each (u, v) ∈ G.
Min-degree upper bound. For each edge (u, v) ∈ G, we
can easily derive that ub(u, v) ,

⌊
min{d(u),d(v)}

τ

⌋
is an

upper bound of score(u, v). This is because the number of
vertices of the edge ego-network of (u, v) is bounded by
min{d(u), d(v)}, thus the number of connected components
with size no less than τ must be no larger than ub(u, v).
Common-neighbor upper bound. For each (u, v) ∈ G, the
common-neighbor upper bound is defined as

⌊
|N(u)∩N(v)|

τ

⌋
.

Also, we can easily show that
⌊
|N(u)∩N(v)|

τ

⌋
is a valid upper

bound of score(u, v) by Definition 2, because the size of
GN(uv) is bounded by |N(u) ∩N(v)|.

It should be noted that the common-neighbor upper bound
is tighter than the min-degree upper bound (since |N(u) ∩
N(v)| ≤ min{d(u), d(v)}), thus it can be more effective to
prune the search space. However, such pruning benefit comes
at computational costs, because the common-neighbor upper
bounds are typically more expensive to calculate than the min-
degree upper bounds.

A. The dequeue-twice search framework
Armed with the above two simple upper-bounding rules, we

develop a dequeue-twice search framework to find the top-k
edges with the highest structural diversities. The general idea is
that we first explore the edges in G with large upper bounds,
because such edges may have a high chance being the top-
k answers. We make use of a priority queue Q to maintain
all edges in G, and initialize the priority for each edge by
its upper bound. When we pop an edge (u, v) from Q for
the first time, we compute its exact structural diversity score
score(u, v), and then push it again into Q using score(u, v)
as its priority. When an edge (u, v) is popped from Q for the
second time, then such an edge is an answer if the number of
current results is smaller than k. Since each top-k edge will
be dequeued twice, we refer to it as a dequeue-twice search
framework. Note that the dequeue-twice search framework can
avoid computing the exact structural diversity scores for the
edges that have small upper bounds, thus it can significantly
improve the efficiency of the algorithm.

The pseudo code of this framework is shown in Algorithm 1.
As shown in Algorithm 1, the algorithm first pushes all edges

Algorithm 1: OnlineBFS
Input: G = (V,E), two integers k and τ
Output: The top-k edge set S

1 Let Q be a priority queue;
2 Q ← ∅; S ← ∅;
3 for (u, v) ∈ E do
4 flag(u, v)← −1;
5 Compute an upper bound ub(u, v) for score(u, v);
6 Q.push((u, v), ub(u, v));
7 while |S| < k do
8 ((u∗, v∗), ub(u∗, v∗))← Q.pop();
9 flag(u∗, v∗)← flag(u∗, v∗) + 1;

10 if flag(u∗, v∗) = 1 then
11 S ← S ∪ {(u∗, v∗)};
12 continue;
13 score(u∗, v∗)← BFS(GN(u∗v∗), τ);
14 Q.push((u∗, v∗), score(u∗, v∗));
15 return S;
16 Procedure BFS(GN(uv), τ)
17 R← the set of connected components in GN(uv) by BFS;
18 cnt← 0;
19 for each R ∈ R do
20 if |R| ≥ τ then cnt← cnt+ 1;
21 return cnt;

into a priority queue Q using their upper bounds (min-degree
or common-neighbor upper bounds) as priorities (lines 1-6).
It also uses a flag variable for each edge (u, v) to indicate
the number of times that (u, v) has been dequeued (line 4).
The algorithm iteratively processes the edges based on their
priorities until the top-k edges are found (lines 7-14). Note
that in line 13, the algorithm performs a BFS on GN(u∗v∗) to
compute the exact structural diversity score(u∗, v∗) for edge
(u∗, v∗).
B. Analysis of Algorithm 1

Below, we analyze the correctness of Algorithm 1.
Theorem 1: Given a graph G = (V,E) and two integers k

and τ , Algorithm 1 correctly computes the top-k edges with
the highest structural diversities.

Proof: Recall that Algorithm 1 iteratively processes the
edges based on their priorities. When an edge (u, v) is
dequeued from the priority queue Q for the second time, its
priority must be equal to score(u, v). Moreover, at this point,
score(u, v) is no less than the priorities of the other edges,
thus it must also be no smaller than the structural diversities
of the other edges. As a consequence, such a dequeued edge
(u, v) must be a top-k answer if the answer size |S| is smaller
than k. Hence, the set S exactly contains the top-k answers
when the algorithm terminates. �

Below, we analyze the time and space complexity of Algo-
rithm 1. Let dmax be the maximum degree of the vertices in
G, and α be the arboricity of G [5], [9]. The arboricity α of
a graph G is defined as follows.

Definition 3: (Arboricity) Given a graph G = (V,E) with
n ≥ 2, the arboricity α of G is defined as:

α
∆
= max
∀GS=(VS ,ES)⊆G

⌈
|ES |
|VS | − 1

⌉
. (1)

The arboricity is an important metric to measure the sparsity
of a graph, which is often very small for most real-world

207

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

graphs [6], [8]. Recently, it is widely used to bound the time
complexity of many graph analysis algorithms [8], [10]–[15].
Below, we show that the time complexity of Algorithm 1 is
also closely related to the arboricity of G.

Theorem 2: The worst-case time and space complexity
of Algorithm 1 is O((αdmax + logm)m) and O(m + n)
respectively.

Proof: In the worst case, Algorithm 1 may com-
pute the structural diversities for all edges. Note that
for each edge (u, v), the algorithm needs to traverse
the edge ego-network GN(uv) to compute score(u, v).
Since the number of vertices in GN(uv) is bounded by
min{d(u), d(v)}, the number of edges in GN(uv) is bounded
by (min{d(u), d(v)})2/2. Therefore, the total time cost to
calculate the structural diversities for all edges can be bounded
by

∑
(u,v)∈E(min{d(u), d(v)})2/2. Since min{d(u), d(v)} ≤

dmax and O(
∑

(u,v)∈E min{d(u), d(v)}) = O(αm) [5],
O(

∑
(u,v)∈E(min{d(u), d(v)})2/2) ≤ O(αdmaxm). It is easy

to verify that the algorithm takes O(m) and O(αm) time
to compute the min-degree upper bounds and the common-
neighbor upper bounds, respectively. Thus, the time cost to
compute the upper bounds is dominated by O(αdmaxm). In
addition, the algorithm needs to maintain a priority queue
with size O(m), and the total maintenance cost is bounded by
O(m logm). As a result, the worst-case time complexity of
Algorithm 1 is O((αdmax + logm)m). We can easily derive
that the space complexity of Algorithm 1 is O(m + n), as
the algorithm only needs to maintain several linear-size data
structures (e.g., Q and flag). �

Note that in real-world graphs, the runtime of Algorithm 1
can be much lower than the worst-case time complexity shown
in Theorem 2, because our algorithm can significantly prune
the edges that have small upper bounds. In our experiments,
we will show that Algorithm 1 is efficient in practice.

IV. AN INDEX-BASED SOLUTION

In this section, we develop a novel index structure, called
ESDIndex, to efficiently support the top-k edge structural
diversity search. Based on ESDIndex, we are able to process
the top-k structural diversity search in near-optimal time
O((αγ(n)+logm)αm), where γ(n) is the inverse Ackermann
function and it is smaller than 5 in practice [16]. Below, we
first introduce our index structure, followed by the proposed
index construction algorithms.

A. The ESDIndex structure
Given a graph G = (V,E) and an edge (u, v) ∈ E, we

let c be the size of a connected component in GN(uv). Let
Cuv , {c|a connected component in GN(uv) has size c} be
the set of all component sizes c’s in the ego-network GN(uv).
Further, we define C ,

⋃
(u,v)∈E Cuv .

The basic idea of the ESDIndex structure is to maintain a
sorted list of the edges for each size c ∈ C. Specifically, the
ESDIndex structure, denoted by H , contains |C| sorted lists.
Let Ec be the set of all edges whose edge ego-networks have
at least one connected component with size no less than c.
For each c ∈ C, we compute the structural diversity for every
edge (u, v) ∈ Ec on the basis of the threshold c. Then, for
each c ∈ C, we can obtain a sorted list H(c) by sorting the
edges in Ec in an non-increasing order based on their structural

edge score

(b,c) 2

(b,e) 2

(c,e) 2

… …

(q,w) 1

c1 = 1

(a) H(1)

edge score

(f,g) 2

(h,i) 2

(j,k) 2

… …

(q,w) 1

c2 = 2

(b) H(2)

edge score

(j,k) 1

(j,u) 1

(j,v) 1

… …

(k,q) 1

c3 = 4

(c) H(4)

edge score

(u,q) 1

(v,p) 1

(p,q) 1

c4 = 5

(d) H(5)

Fig. 2. The ESDIndex structure of G in Fig. 1(a)

diversities. Note that for an edge (u, v), if the maximum size of
the connected components in GN(uv) is smaller than c, then
(u, v) cannot be included in H(c). We make use of a self-
balance binary search tree structure [16] to maintain H(c) for
each c ∈ C. The following example illustrates the ESDIndex
structure.

Example 4: Consider the graph G in Fig. 1(a). It
is easy to derive that C = {1, 2, 4, 5}. Therefore, we
have four sorted lists H(1), H(2), H(4), and H(5)
as shown in Fig. 2. Clearly, H(1) contains all edges,
because all edges’ ego-networks have at least one connected
component with size no less than 1. The set of edges
{(a, b), (a, c), (b, c), (b, d), (b, e), (c, e), (c, g)} are not
contained in H(2), since the size of the maximum connected
component in these edges’ ego-networks is smaller than 2.
Similarly, we can see that H(4) contains 15 edges which are
{(j, k), (j, u), (j, v), (k, u), (k, v), (u, v), (u, p), (u, q), (v, p),
(v, q), (p, q), (j, p), (j, q), (k, p), (k, q)} and H(5) contains
three edges, namely, (u, p), (u, q), (p, q). Note that the edges
in H(c) for c ∈ C are sorted in a non-increasing order based
on their structural diversities. For example, when c = 5, we
compute the structural diversities for all edges in G based on
the threshold c = 5. We can easily check that under this case,
the structural diversities of all edges in {(u, p), (u, q), (p, q)}
are equal to 1 as illustrated in Fig. 2(d).
The space overhead of ESDIndex. We analyze the space
usage of the ESDIndex in the following theorem.

Theorem 3: Given a graph G, the worst-case space com-
plexity of the ESDIndex is O(αm) where α is the arboricity
of G.

Proof: For each edge (u, v), the size of the maximum
connected component in GN(uv) is no larger than δuv =
|N(u) ∩ N(v)|. Thus, an edge (u, v) is included in at most
δuv sorted lists (H(c) for 1 ≤ c ≤ δuv). As a result, the
total size of the ESDIndex is bounded by O(

∑
(u,v)∈E δuv) ≤

O(
∑

(u,v)∈E min{d(u), d(v)}) = O(αm). �
Note that the arboricity of a real-world graph is often very

small [6], [7], thus the ESDIndex is space-efficient in practice,
which is confirmed in our experiments.

B. Query processing algorithm
Equipped with the ESDIndex, we can easily process the

top-k structural diversity query. In particular, for a given top-
k structural diversity query (k, τ), we first find the sorted list
H(c∗) (c∗ ∈ C) where c∗ is the smallest integer in C such
that c∗ ≥ τ , and then report the top-k edges in H(c∗). Below,
we analyze the correctness of this query processing algorithm.

Theorem 4: Given two integers k and τ , the query pro-
cessing algorithm correctly outputs the top-k edges with the
highest structural diversities.

Proof: We consider two cases: (1) τ = c∗ and (2) τ < c∗.
For the first case, the top-k results in H(c∗) are clearly the

208

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

answers. For the second case, we let c′ be the largest integer in
C such that c′ < τ . Then, in this case, we have c′ < τ < c∗.
Recall that by our definition, there is no connected component
in the edge ego-networks that has a size τ . Since c∗ is the
smallest integer in C with c∗ > τ , the structural diversity of
each edge in G computed by using a threshold τ equals the
structural diversity calculated by using c∗. As a consequence,
the top-k results in H(c∗) are correct. �

Example 5: Reconsider the graph in Fig. 1(a). Suppose
that k = 3 and τ = 2. The query processing algorithm
first finds the index structure H(2) because 2 ∈ C is the
smallest integer that is no less than τ . As shown in Fig. 2(b),
(f, g), (h, i) and (j, k) have the highest structural diversities
(score(f, g) = score(h, i) = score(j, k) = 2) in H(2), thus
{(f, g), (h, i), (j, k)} are the answers. �

The time complexity of the query processing algorithm is
analyzed as follows.

Theorem 5: Given two integers k and τ , the query process-
ing algorithm can answer the top-k structural diversity query
in O(k logm+ log n) time.

Proof: First, we can make use of a binary search procedure
to find the c∗ in O(log n) time, because |C| is obviously
bounded by n. Second, since H(c) is a self-balance binary
search tree, finding the top-k results in H(c) can be done in
O(k logm). Therefore, the total time cost of the algorithm is
O(k logm+ log n). �

Note that any top-k algorithm must consume O(k) time to
output the results, thus our query processing algorithm is near
optimal (only with a logm factor).

C. Index construction: A basic algorithm

To construct the ESDIndex, a basic solution is to apply
a BFS algorithm to compute the connected components in
GN(uv) for each edge (u, v) ∈ E. The pseudo code of
this basic solution is shown in Algorithm 2. First, for each
edge (u, v), the algorithm computes the set of connected
components in GN(uv) by using BFS (lines 1-2). Let Cuv
be the set of all connected component sizes in GN(uv), and
C =

⋃
(u,v)∈E Cuv (lines 3-4). Then, the algorithm initializes

a self-balance binary search tree H(c) for each c ∈ C
(line 5). After that, the algorithm computes the structural
diversity for each edge (u, v), and inserts the edge (u, v)
into H(c) for c ≤ cmax, where cmax denotes the size of the
maximum connected component in GN(uv) (lines 6-15). The
correctness of Algorithm 2 can be guaranteed by the definition
of the ESDIndex. Below, we analyze the time complexity of
Algorithm 2.

Theorem 6: The worst-case time complexity of Algorithm 2
is O((dmax + logm)αm), where dmax and α denote the
maximum degree and the arboricity of G respectively.

Proof: First, for each edge (u, v), the size of GN(uv) is
bounded by O(δ2uv), where δuv = |N(u) ∩ N(v)|. Thus,
lines 1-3 of Algorithm 2 take at most O(

∑
(u,v)∈E δ

2
uv). Since

δuv ≤ min{d(u), d(v)} and O(
∑

(u,v)∈E min{d(u), d(v)}) =
O(αm), O(

∑
(u,v)∈E δ

2
uv) can be bounded by O(αdmaxm).

Second, for each edge (u, v), both max and cmax in line 7
can be bounded by δuv . Note that inserting an edge (u, v)
into a self-balance binary search tree H(c) takes at most
O(logm) time [16] (line 15). Thus, the total time cost taken
in lines 6-15 is O(

∑
(u,v)∈E δuv logm) which is bounded by

Algorithm 2: ESDIndex
Input: G = (V,E)
Output: The ESDIndex H

1 for each (u, v) ∈ E do
2 Compute the set of connected components in GN(uv) by

BFS;
3 Cuv ← the set of all component sizes in GN(uv);

4 C ←
⋃

(u,v)∈E Cuv;
5 H(c)← ∅ for each c ∈ C;
6 for each (u, v) ∈ E do
7 Let ci ∈ Cuv with c1 ≤ c2 ≤ · · · ≤ cmax;
8 xi ← the number of components in GN(uv) with size ci;
9 s← 0;

10 for i = max to 1 do
11 s← s+ xi; si ← s;
12 for c = 1 to cmax do
13 if c ∈ C then
14 Find the smallest i such that c ≤ ci;
15 H(c).insert((u, v), si);

16 return H;

O(αm logm). As a result, the time complexity of Algorithm 2
is O((dmax + logm)αm). �

D. Index construction: An improved algorithm

As discussed above, the basic index construction algorithm
may be very costly for large graphs, because the maximum
degrees of many real-life large graphs are typically very large.
Here we develop an improved algorithm which reduces the
time complexity over the basic algorithm from O((dmax +
logm)αm) to O((αγ(n)+logm)αm), where the arboricity α
is typically much smaller than the maximum degree dmax and
γ(n) < 5. The improved algorithm is based on the following
crucial observation.

Observation 1: Given an edge (u, v) and its ego-network
GN(uv), the four vertices {u, v, w1, w2} form a 4-clique in G
if and only if (w1, w2) ∈ GN(uv).

Proof: First, since (w1, w2) ∈ GN(uv), both w1 and w2

are common neighbors of u and v. Note that there is an
edge connecting w1 and w2 in G, thus the four vertices
{u, v, w1, w2} form a 4-clique in G. Second, if the vertices
{u, v, w1, w2} form a 4-clique, both w1 and w2 must be
contained in GN(uv). Since w1 and w2 are connected, we have
(w1, w2) ∈ GN(uv). �

According to the Observation 1, we can make use of a
4-clique enumeration algorithm to construct the connected
components for all edge ego-networks. Specifically, we first
orientate the graph G in terms of the degree ordering. Denote
by ~G the directed graph generated by the degree ordering.
Then, we enumerate the 4-cliques on ~G. When a 4-clique
{u, v, w1, w2} is found, we maintain the connecting rela-
tionships in the edge ego-networks of six edges in this 4-
clique based on the Observation 1. To make this procedure
efficient, we use a disjoint-set data structure (a Union-Find
structure) to maintain each connected component in GN(uv).
After we obtain the components for each edge ego-network,
we can apply a similar method used in Algorithm 2 to
construct the ESDIndex. The pseudo code of the improved
index construction algorithm is shown in Algorithm 3.

209

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: ESDIndex+
Input: G = (V,E)
Output: The ESDIndex H

1 for (u, v) in G do
2 N(uv)← N(u) ∩N(v); Muv ← ∅;
3 for each w ∈ N(uv) do
4 Muv[w].root← w; Muv[w].count← 1;

5 ~G = (V, ~E)← a directed graph generated by degree
ordering;

6 for u ∈ V do
7 for v ∈ N+(u) do
8 ~GN(uv) ← a subgraph induced by N+(u) ∩N+(v);
9 for each edge (w1, w2) ∈ ~GN(uv) do

10 Muv.Union(u, v, w1, w2);
11 Muw1 .Union(u,w1, v, w2);
12 Muw2 .Union(u,w2, v, w1);
13 Mvw1 .Union(v, w1, u, w2);
14 Mvw2 .Union(v, w2, u, w1);
15 Mw1w2 .Union(w1, w2, u, v);

16 C ← ∅;
17 for each (u, v) ∈ E do
18 Cuv ← ∅;
19 for each w ∈ N(uv) do
20 if Muv[w].root = w then
21 Cuv ← Cuv ∪ {Muv[w].count};

22 C ←
⋃

(u,v)∈E Cuv;
23 Using lines 5-15 of Algorithm 2 to build the ESDIndex H;
24 return H;
25 Procedure Find(Muv, w)
26 while Muv[w].root 6= w do
27 w′ ←Muv[w].root; Muv[w].root←Muv[w

′].root;
w ← w′;

28 return w;
29 Procedure Union(u, v, w1, w2)
30 r1 ← Find(Muv, w1); r2 ← Find(Muv, w2);
31 if r1 6= r2 then
32 Merge the two sets with roots r1 and r2;
33 Let r be the root of the merged set;
34 Muv[w1].root = r; Muv[w2].root = r;
35 Muv[r].count =Muv[r1].count+Muv[r2].count;

Algorithm 3 works as follows. First, it creates a disjoint-
set structure Muv for each edge (u, v). In Muv , each vertex
w ∈ N(uv) (N(uv) = N(u) ∩ N(v)) is initialized as a
set, and a variable ‘count’ is used to record the size of each
set (lines 1-4). Then, in lines 5-15, the algorithm enumerates
all 4-cliques in the directed graph ~G. Upon finding a 4-
clique {u, v, w1, w2}, for each edge (x, y) in the 4-clique,
the algorithm merges the sets of the other two vertices in
the disjoint-set structure Mxy using a standard Union oper-
ator (lines 10-15) because the other two vertices should be
contained in the same connected component. After searching
all 4-cliques in G, for each edge (u, v), all the connected
components in GN(uv) are maintained in Muv . Note that by
Algorithm 3, each 4-clique is only enumerated once, thus it is
more efficient than Algorithm 2, which needs to explore a 4-
clique six times. Subsequently, the algorithm records the sizes
of the connected components in all edges’ ego-networks based
on the variable ‘count’ of all sets in disjoint-set structures

(lines 16-22). Finally, the algorithm applies a similar procedure
to construct the ESDIndex as used in Algorithm 2 (line 23).
Below, we analyze the time complexity of Algorithm 3.

Theorem 7: The worst-case time complexity of Algorithm 3
is O((αγ(n) + logm)αm), where α is the arboricity of the
graph and γ(n) is the inverse Ackermann function (γ(n) < 5).

Proof: First, in lines 1-4, Algorithm 3 takes
O(

∑
(u,v)∈E min{du, dv}) = O(αm) time to initialize

the disjoint-set structures for all edges. Second, in lines 6-15,
the algorithm needs to enumerate each 4-clique once which
takes O(α2m) time [5]. Note that when enumerating a 4-
clique, the algorithm requires to perform six Union operators.
The time overhead of the Union operator can be bounded
by γ(n) which is the inverse Ackermann function and it is
smaller than 5 in practice [16]. Hence, the total cost taken
in lines 6-15 can be bounded by O(α2γ(n)m). Third, in
lines 16-23, the total time cost is bounded by O(αm logm)
as analyzed in Theorem 6. Putting it all together, the time
complexity of Algorithm 3 is O((αγ(n) + logm)αm). �

E. Parallel implementation
Here we introduce a parallel implementation of the im-

proved index construction algorithm. Specifically, in line 1
of Algorithm 3, we can process the edges in parallel, because
each Muv can be initialized independently in (u, v)’s ego-
network. To enumerate 4-cliques (lines 6-15 of Algorithm 3),
a simple parallel solution is to process each vertex u ∈ V
in parallel in line 6 of Algorithm 3. However, such a simple
solution may be inefficient, because the out-degrees of the
vertices typically exhibit a skew distribution, resulting in
the workloads of different threads are unbalanced. A better
solution is to enumerate 4-cliques for each directed edge in
parallel. This is because the distribution of the number of
common outgoing neighbors of the directed edges is typically
not very skew, thus improving the degree of parallelism of
the algorithm. In the experiments, we adopt such an edge-
parallel approach in our parallel implementation. Additionally,
in line 17 and line 23 of Algorithm 3, we are also able to
process the edges in parallel. In the experiments, we will
show that our parallel implementation can achieve a very good
speedup ratio on real-life graphs.

V. INDEX MAINTENANCE ON DYNAMIC GRAPHS

In this section, we develop efficient solutions to maintain
the ESDIndex when the graph is updated. We focus mainly on
the edge insertion and deletion, as vertex insertion and deletion
can be treated as a series of edge insertions and deletions.

A. Handling edge insertion
To maintain the ESDIndex after inserting an edge, the key

is to maintain the structural diversities of the edges in G. Let
ĜN(uv) be a subgraph induced by the vertices N(uv)∪{u, v}.
The following key observation shows that we only need to
update the structural diversities of the edges in the small
subgraph ĜN(uv) after inserting an edge (u, v).

Observation 2: After inserting an edge (u, v) into G, the
structural diversities of the edges in ĜN(uv) need to be
updated, and the structural diversities of the edges that are
not in ĜN(uv) remain unchanged.

Proof: Clearly, for any edge (w1, w2) ∈ ĜN(uv), we need
to update the ego-network of (w1, w2), thus its structural

210

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Insertion
Input: G = (V,E), H , M , Cw1w2 for each edge (w1, w2),

and an inserted edge (u, v)
Output: the updated H , M , and Cw1w2 for each edge

(w1, w2)
1 Insert (u, v) in G;
2 N(uv)← N(u) ∩N(v); ĜN(uv) ← ({u, v}, {(u, v)});
3 flag(w)← 0 for each w ∈ V ; Muv ← ∅;
4 for each w ∈ N(uv) do
5 Add vertex w into ĜN(uv); flag(w)← 1;
6 Add edges (u,w) and (v, w) into ĜN(uv);
7 Muv[w].root← w; Muv[w].count← 1;
8 Muw[v].root← v; Muw[v].count← 1;
9 Mvw[u].root← u; Mvw[u].count← 1;

10 for each w1 ∈ N(uv) do
11 for each w2 ∈ N+(w1) do
12 if flag(w2) = 1 then
13 Add edge (w1, w2) into ĜN(uv);
14 Muv.Union(u, v, w1, w2);
15 Mw1w2 .Union(w1, w2, u, v);
16 Muw1 .Union(u,w1, v, w2);
17 Mvw1 .Union(v, w1, u, w2);
18 Muw2 .Union(u,w2, v, w1);
19 Mvw2 .Union(v, w2, u, w1);

20 for each edge (w1, w2) ∈ ĜN(uv) do
21 Using lines 18-21 of Algorithm 3 to update Cw1w2 ;
22 Using lines 7-15 of Algorithm 2 to update H;

b

ec

d

g

(a) ĜN(cd)

b

e

d f

g

(b) GN(de), before insert

b

ec

d f

g

(c) GN(de), after insert

Fig. 3. Illustration of the edge insertion algorithm

diversity also requires to be updated. For any edge (w1, w2) /∈
ĜN(uv), w1 and w2 cannot form a triangle or a 4-clique with
u and v, thus its ego-network keeps unchanged. �

Based on the Observation 2, we propose a local-update
algorithm to handle the edge insertion in Algorithm 4. Note
that in Algorithm 4, to efficiently maintain the ESDIndex H ,
we also need to maintain the disjoint-set structure Mw1w2 and
the component size set Cw1w2

for each edge (w1, w2) ∈ G.
First, the algorithm creates a new disjoint-set structure Muv

for the inserted edge (u, v) (line 3) and constructs the sub-
graph ĜN(uv) online (lines 2-6 and line 13). For each vertex
w ∈ N(uv) = N(u) ∩ N(v), the algorithm initializes a set
for every edge in the triangle {u, v, w} (lines 7-9), denoting a
connected component with an isolated vertex. After that, the
algorithm iteratively processes each edge (w1, w2) in (u, v)’s
ego-network GN(uv) (lines 10-19). Note that in each iteration,
the vertices w1, w2, u, and v form a 4-clique. For each edge
(x, y) in the 4-clique, the algorithm merges the sets of the other
two vertices in Mxy using a standard Union operator (lines 14-
19), because the other two vertices are contained in the same
connected component after inserting (u, v). Finally, equipped
with the updated Muv’s, the algorithm iteratively updates both
Cw1w2 and H for each edge (w1, w2) ∈ ĜN(uv) using similar
approaches as used in Algorithm 3 and Algorithm 2. The
following example illustrates the insertion algorithm.

Example 6: Reconsider the graph G shown in Fig. 1(a).

Suppose that we insert an edge (c, d) into G. The subgraph
ĜN(cd) is shown in Fig. 3(a). By Observation 2, the ego-
networks of all edges in ĜN(cd) need to be updated. Take
an edge (d, e) ∈ ĜN(cd) as an example. The ego-network of
(d, e) before inserting (c, d) is depicted in Fig. 3(b) (shaded
area), where the vertices f and g form a connected component,
and the isolated vertex b forms another component. After
inserting (c, d), we can see that the vertices {b, c, d, e} in G
is a 4-clique, thus both b and c must be merged into the same
component of (d, e)’s ego-network. Similarly, c and g are also
in the same component. Therefore, the ego-network of (d, e)
contains only one connected component after inserting (c, d)
as shown in Fig. 3(c) (shaded area). �

Below, we analyze the time complexity of Algorithm 4.
Let Guv be a subgraph induced by the set of vertices⋃
w∈N(uv)N(w) ∪ {u, v} and muv be the number of edges

in Guv . Further, we let m′ be the number of edges in ĜN(uv).
Theorem 8: The worst-case time complexity of Algorithm

4 to process an insertion of (u, v) is O(α2γ(n)m′ + (α +
logm)muv) time.

Proof: First, it is easy to see that lines 4-9 of Algorithm
4 take O(min{du, dv}) time. Second, in lines 10-19, the
algorithm needs to enumerate the 4-cliques in ĜN(uv). For
each edge (w1, w2) in those 4-cliques, the algorithm needs to
update Mw1w2

which takes O(γ(n)) time. Since the number
of 4-cliques is bounded by O(α2m′), the total time cost taken
in lines 10-19 is O(α2γ(n)m′). Finally, in lines 20-22, the
algorithm needs to traverse the ego-network for each edge
(x, y) ∈ ĜN(uv) to maintain Cxy and the index H , which
consumes at most O(α+ logm)muv) time. �

Note that the time complexity of Insertion relies mainly on
the size of a small subgraph Guv (i.e., muv), rather than the
size of the original graph. Since muv is typically not very
large, our algorithm is efficient in practice, as confirmed in
our experiments.

B. Handling edge deletion
Here we consider the case of deleting an edge (u, v) from

G. Let G̃N(uv) = ĜN(uv) \ {(u, v)}. Similar to the insertion
case, we only need to update the structural diversities of the
edges in G̃N(uv) when deleting (u, v). Specifically, we have
the following observation.

Observation 3: After deleting an edge (u, v) from G, the
structural diversities of the edges in G̃N(uv) need to be
updated, while for any edge (x, y) /∈ G̃N(uv), its structural
diversity keeps unchanged.

Based on the Observation 3, we devise a local-update
algorithm to handle the edge deletion in Algorithm 5. First,
for each w ∈ N(uv), if it forms an isolated component in
(u, v)’s ego-network, the algorithm deletes the set of v (u) in
Muw (Mvw), because v (u) is no longer a common neighbor
between u (v) and w (lines 6-9). Then, for a 4-clique in
ĜN(uv), the algorithm needs to update Mxy for each edge
(x, y) in that 4-clique except Muv (lines 10-18). Note that in
the Update procedure (lines 24-35), we only need to explore
the vertices in the connected component containing u or v
which is maintained by a set S. Subsequently, the algorithm
iteratively updates Cw1w2

and H for each edge (w1, w2) ∈
G̃N(uv) using similar methods as used in Algorithm 3 and
Algorithm 2 (lines 19-21). Finally, the algorithm deletes Muv

211

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 5: Deletion
Input: G = (V,E), H , M , Cw1w2 for each edge (w1, w2),

and a deleted edge (u, v)
Output: the updated H , M , and Cw1w2 for each edge

(w1, w2)
1 N(uv)← N(u) ∩N(v); G̃N(uv) ← ∅;
2 flag(w)← 0 for each w ∈ V ;
3 for each w ∈ N(uv) do
4 Add vertex w into G̃N(uv); flag(w)← 1;
5 Add edges (u,w) and (v, w) into G̃N(uv);
6 if Muw[v].root = v and Muw[v].count = 1 then
7 Delete Muw[v];
8 if Mvw[u].root = u and Mvw[u].count = 1 then
9 Delete Mvw[u];

10 for each w1 ∈ N(uv) do
11 for each w2 ∈ N+(w1) do
12 if flag(w2) = 1 then
13 Add edge (w1, w2) into G̃N(uv);
14 Mw1w2 .Update(u,w1, w2, u, v);
15 Muw1 .Update(v, u, w1, u, v);
16 Mvw1 .Update(u, v, w1, u, v);
17 Muw2 .Update(v, u, w2, u, v);
18 Mvw2 .Update(u, v, w2, u, v);

19 for each edge (w1, w2) ∈ G̃N(uv) do
20 Using lines 18-21 of Algorithm 3 to update Cw1w2 ;
21 Using lines 7-15 of Algorithm 2 to update H;

22 Delete Muv; Delete G̃N(uv);
23 Delete (u, v) in H and G;
24 Procedure Update(z, w1, w2, u, v)
25 if Mw1w2 has already been updated then return;
26 Delete (u, v) in G; S ← ∅; Tw1w2 ← ∅;

r ←Mw1w2 [z].root;
27 for each w ∈ N(w1w2) do
28 if Mw1w2 [w].root = r then
29 S ← S ∪ {w};
30 Tw1w2 [w].root← w; Tw1w2 [w].count← 1;

31 for each x ∈ S do
32 for each y ∈ S and y ∈ N+(x) do
33 Tw1w2 .Union(w1, w2, x, y);

34 Mw1w2 ← Tw1w2 ;
35 Insert (u, v) in G;

q

ph j

k

u

v

(a) G̃N(uk)

q

ph

i

j

k

u

v

(b) GN(jk), before delete

q

ph

i

j

k v

(c) GN(jk), after delete

Fig. 4. Illustration of the edge deletion algorithm

and (u, v) in the ESDIndex H (lines 22-23). The following
example illustrates the key idea of the edge deletion algorithm.

Example 7: Reconsider the graph G in Fig. 1(a). Suppose
that we delete an edge (u, k) from G. Then, the subgraph
G̃N(uk) is shown in Fig. 4(a). According to the Observation 3,
the ego-network of each edge in G̃N(uk) needs to be updated.
Let us consider the edge (j, k) as an example. The ego-
network of (j, k) before removing (u, k) is shown in Fig. 4(b)
(shaded area). After deleting (u, k), the 4-clique {j, k, u, v}
is broken. As a result, the algorithm re-constructs GN(jk) and
re-computes the structural diversity of (j, k). The updated ego-

TABLE I
DATASETS

Dataset n m dmax δ
Youtube 1,134,890 2,987,624 28,754 51
WikiTalk 2,394,385 4,659,565 100,029 131
DBLP 1,843,617 8,350,260 2,213 279
Pokec 1,632,803 22,301,964 14,854 47

LiveJournal 3,997,962 34,681,189 14,815 360

network of (j, k) is shown in Fig. 4(c) (the shaded area). As
can be seen, the algorithm needs to create a new list H(3),
because there is a connected component with size c = 3. After
that, the algorithm inserts (j, k) into H(3). �

The time complexity of Algorithm 5 is analyzed in the
following theorem.

Theorem 9: The worst-case time complexity of Algorithm
5 for handling a deletion of (u, v) is O(α2m′ + (αγ(n) +
logm)muv).

Proof: Clearly, the most time-consuming steps of Algo-
rithm 5 are lines 10-18 and lines 19-21. In lines 10-18,
the algorithm takes O(α2m′) to list all 4-cliques in (u, v)’s
ego-network. For each edge (w1, w2) in the those 4-cliques,
the algorithm only updates Mw1w2

once. To update Mw1w2
,

the algorithm needs to traverse the ego-network of (w1, w2)
and performs the Union operator. Thus, the total cost can
be bounded by O(

∑
(w1,w2)∈GN(uv)

(min{dw1
, dw2
}γ(n))) ≤

O(αγ(n)muv). By a similar analysis in Theorem 8, the time
cost taken in lines 19-21 is O((α+ logm)muv). �

VI. EXPERIMENTS

In this section, we conduct extensive experiments to eval-
uate the efficiency and effectiveness of the proposed algo-
rithms. We implement the dequeue-twice online search frame-
work (Algorithm 1) with two upper-bounding rules. Specif-
ically, we refer to the dequeue-twice framework with min-
degree and common-neighbor upper bounds as OnlineBFS
and OnlineBFS+, respectively. Since there is no existing
algorithm that can be used to compute the top-k edge structural
diversities, we make use of our online search algorithms as
baselines. For comparison, we implement the index-based
algorithm and refer to it as IndexSearch. To construct the
ESDIndex, we implement Algorithm 2 and Algorithm 3,
denoted by ESDIndex and ESDIndex+, respectively. A parallel
version of ESDIndex+, denoted by PESDIndex+, is also im-
plemented. In addition, we implement Insertion (Algorithm 4)
and Deletion (Algorithm 5) to maintain the ESDIndex in
dynamic graphs. All algorithms are implemented in C++. All
experiments are conducted on a PC with 2.40GHz Intel Xeon
E52620 (6-core) CPU and 32GB memory running Ubuntu
16.04.1 LTS (64-bit). In all experiments, both the graph and
the ESDIndex are resident in the main memory.
Datasets. We make use of five large real-life networks in
the experiments. The detailed statistics of the datasets are
summarized in Table I. In Table I, dmax and δ denote the
maximum degree and the degeneracy of the graph, respec-
tively. Youtube, Pokec, and LiveJournal are online social
networks, WikiTalk is a communication network, and DBLP
is a scientific collaboration network. All these datasets are
downloaded from http://snap.stanford.edu/data/index.html.
Parameters. There are two parameters in our algorithms: τ
and k. The parameter τ is selected from the interval [1, 6]
with a default value of τ = 3; k is chosen from the set
{1, 10, 50, 100, 150, 200} with a default value of k = 100.

212

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

0

600

1.2K

1.8K

2.4K

1 10 50 100 150 200

T
im

e
(s

ec
)

k

OnlineBFS
OnlineBFS+

(a) Pokec (vary k)

0

2K

4K

6K

8K

1 10 50 100 150 200

T
im

e
(s

ec
)

k

OnlineBFS
OnlineBFS+

(b) Livejournal (vary k)

0

0.6K

1.2K

1.8K

2.4K

1 2 3 4 4 6

T
im

e
(s

ec
)

τ

OnlineBFS
OnlineBFS+

(c) Pokec (vary τ)

0

2K

4K

6K

8K

1 2 3 4 4 6

T
im

e
(s

ec
)

τ

OnlineBFS
OnlineBFS+

(d) Livejournal (vary τ)

Fig. 5. Runtime of OnlineBFS and OnlineBFS+ with varying parameters

 0

 500

 1000

 1500

 2000

Youtube Wiki DBLP Pokec LiveJournal

M
em

o
ry

 (
M

B
)

Graph size
ESDIndex size

(a) Memory overhead

2K

4K

6K

8K

10K

12K

Youtube Wiki DBLP Pokec LiveJournal

T
im

e
(s

ec
)

ESDIndex
ESDIndex+

(b) Indexing time

Fig. 6. Evaluation of the ESDIndex

Unless otherwise specified, the values of the other parameters
are set to their default values when varying a parameter.

A. Efficiency testing

Exp-1: Comparison between OnlineBFS and OnlineBFS+.
Fig. 5 shows the runtime of OnlineBFS and OnlineBFS+ with
varying k and τ on Pokec and LiveJournal datasets. Similar
results can also be observed on the other datasets. As expected,
the runtime of both OnlineBFS and OnlineBFS+ increases
as k increases. In general, both OnlineBFS and OnlineBFS+
achieve the minimum runtime at τ = 1, and then the run-
time of both OnlineBFS and OnlineBFS+ decreases when τ
increases. This is because the structural diversities of many
edges are 0 for a large τ , thus reducing the computational
costs. As can be seen, OnlineBFS+ is significantly faster
than OnlineBFS with all parameter settings. For example, on
Pokec, OnlineBFS+ takes 261.7 seconds, while OnlineBFS
consumes 2120.5 seconds to output the top-100 results. The
reason is that the common-neighbor upper bound is tighter
than the min-degree upper bound, thus it is more effective to
prune the search space. These results indicate that the pruning
benefits of OnlineBFS+ dominate the computational costs for
the common-neighbor upper bounds.
Exp-2: Evaluation of the ESDIndex. We build the index struc-
ture for five datasets using both ESDIndex and ESDIndex+.
Fig. 6(a) reports the index size and the graph size. As can
be seen, the index size is generally 4-8 times larger than
the graph size, which confirms the theoretical analysis in
Section IV-A. From Fig. 6(b), we can see that ESDIndex+
is 2 to 10 times faster than ESDIndex over all datasets. The
reason is as follows. ESDIndex applies BFS to compute edge
structural diversities which traverses each 4-clique six times,
while ESDIndex+ only needs to explore each 4-clique once.
Moreover, we can see that ESDIndex+ performs very well on
small-degeneracy graphs, this is because the time complexity

0

4

8

12

16

1 4 8 12 16 20

S
p
ee

d
u
p
 r

at
io

t

PESDIndex+

(a) Pokec (vary threads t)

 0

 2

 4

 6

 8

 10

1 4 8 12 16 20

S
p
ee

d
u
p
 r

at
io

t

PESDIndex+

(b) LiveJournal (vary threads t)

Fig. 7. Speedup ratio of the PESDIndex+ algorithm

of ESDIndex+ depends on the arboricity of the graph which
can be well approximated by the degeneracy. For example, on
a small-degeneracy graph Pokec, ESDIndex+ only consumes
266.3 seconds to create the index. However, on the same
dataset, ESDIndex takes 2694.3 seconds to construct index.
These results are consistent with our theoretical analysis shown
in Section IV.
Exp-3: Parallel index construction. Here we evaluate the
speedup ratio of the parallel index construction algorithm, i.e.,
PESDIndex+. To this end, we vary the number of threads,
t, from 1 to 20 and evaluate the runtime of PESDIndex+
with an increasing t. Fig. 7 reports the results on Pokec and
LiveJournal. Similar results can also be observed on the other
datasets. From Fig. 7, we can see that PESDIndex+ achieves
linear speedup ratios on both Pokec and LiveJournal. For
example, when t = 20 the speedup ratio of PESDIndex+
is roughly equal to 12 on Pokec. These results indicate that
our parallel index construction algorithm is very efficient on
real-life graphs.
Exp-4: Comparison between OnlineBFS+ and IndexSearch.
Fig. 8 shows the runtime of OnlineBFS+ and IndexSearch on
different datasets with varying parameters. From Figs. 8(a-
e), we can see that the runtime of both OnlineBFS+ and
IndexSearch increases with increasing k. Generally, on all
datasets, IndexSearch is at least four orders of magnitude faster
than OnlineBFS+ with all parameter settings. For example, on
Pokec, when k = 100, IndexSearch takes 0.4 milliseconds and
OnlineBFS+ takes 261.7 seconds to output the top-k results.
This is because IndexSearch can answer the top-k edge struc-
tural diversity query in near-optimal time (O(k logm+log n)),
while OnlineBFS+ needs to compute the structural diversities
online which is costly. Similarly, as shown in Figs. 8(f-j),
the runtime of IndexSearch is also at least four orders of
magnitude faster than OnlineBFS+ with varying τ . Moreover,
we can see that the runtime of IndexSearch is robust with
respect to (w.r.t.) the parameter τ , because IndexSearch can
directly output the top-k results based on the ESDIndex which
is independent of τ . These results confirm the theoretical
analysis presented in Sec. IV.
Exp-5: Scalability testings. Here we evaluate the scalabil-
ity of the proposed algorithms. To this end, we generate
four subgraphs for each dataset by randomly picking 20%-
80% of the edges (vertices), and evaluate the runtime of
OnlineBFS+ and IndexSearch on these subgraphs. Fig. 9
shows the results on LiveJournal, and similar results can
also be obtained on the other datasets. We can clearly see
that OnlineBFS+ achieves linear scalability. The runtime of
OnlineBFS+ increases smoothly as the graph size increases.
For the index-based algorithm, IndexSearch, its runtime keeps
stable with varying m or n. Again, IndexSearch is four orders

213

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

1e-5

1e-3

0.1

10

1K

1 10 50 100 150 200

T
im

e
 (

se
c
)

k

OnlineBFS+
IndexSearch

(a) Youtube (vary k)

1e-5

1e-3

0.1

10

1K

1 10 50 100 150 200

T
im

e
 (

se
c
)

k

OnlineBFS+
IndexSearch

(b) Wiki (vary k)

1e-5

1e-3

0.1

10

1K

1 10 50 100 150 200

T
im

e
 (

se
c
)

k

OnlineBFS+
IndexSearch

(c) DBLP (vary k)

1e-5

1e-3

0.1

10

1K

1 10 50 100 150 200

T
im

e
 (

se
c
)

k

OnlineBFS+
IndexSearch

(d) Pokec (vary k)

1e-5

1e-2

10

10K

1 10 50 100 150 200

T
im

e
 (

se
c
)

k

OnlineBFS+
IndexSearch

(e) Livejournal (vary k)

1e-3

0.1

10

1K

1 2 3 4 4 6

T
im

e
 (

se
c
)

τ

OnlineBFS+
IndexSearch

(f) Youtube (vary τ)

1e-3

0.1

10

1K

1 2 3 4 4 6

T
im

e
 (

se
c
)

τ

OnlineBFS+
IndexSearch

(g) Wiki (vary τ)

1e-3

0.1

10

1K

1 2 3 4 5 6

T
im

e
 (

se
c
)

τ

OnlineBFS+
IndexSearch

(h) DBLP (vary τ)

1e-3

0.1

10

1K

1 2 3 4 4 6

T
im

e
 (

se
c
)

τ

OnlineBFS+
IndexSearch

(i) Pokec (vary τ)

1e-3

0.1

10

1K

100K

1 2 3 4 4 6

T
im

e
 (

se
c
)

τ

OnlineBFS+
IndexSearch

(j) Livejournal (vary τ)

Fig. 8. Comparison of runtime between OnlineBFS+ and IndexSearch on different datasets

1e-5

1e-3

0.1

10

1K

100K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

OnlineBFS+
IndexSearch

(a) Vary m

1e-5

1e-3

0.1

10

1K

100K

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

OnlineBFS+
IndexSearch

(b) Vary n

Fig. 9. Scalability of OnlineBFS+ and IndexSearch

 0

 100

 200

 300

 400

 500

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

t = 1
t = 20

(a) Vary m

 0

 100

 200

 300

 400

 500

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

t = 1
t = 20

(b) Vary n

Fig. 10. Scalability of PESDIndex+ (with 1 and 20 threads)

of magnitude faster than OnlineBFS+ with all parameter
settings, which is consistent with our previous findings. We
also evaluate the scalability of our parallel index construction
algorithm PESDIndex+ on LiveJournal. The results are shown
in Fig. 10. As can be seen, the runtime of PESDIndex+
increases smoothly w.r.t. the graph size. The speedup ratio
of PESDIndex+ with 20 threads is between 6 and 9 on
all subgraphs. These results are consistent with our previous
results.
Exp-6: Index maintenance testings. To evaluate the perfor-
mance of our index maintenance algorithms, we randomly
select 1000 edges for insertion and deletion on each dataset.
The average runtime of our Insertion and Deletion algorithms
over the 1000 edge insertions and deletions respectively is
shown in Fig. 11. As expected, the update time of both
Insertion and Deletion increases when the graph size and
index size increase. The average insertion time is lower than
the average deletion time on all datasets, because Deletion
involves a more expensive Update procedure. These results
are consistent with our analysis in Section V-B. In addition,
we can see that both the insertion and deletion costs are
much lower than the index construction cost. For example,
on WikiTalk, the insertion and deletion time is 4.6 and 8.9
seconds respectively, while the index construction is 400.7
seconds. These results indicate that our index maintenance
algorithms are very efficient on real-life graphs.

B. Effectiveness testing

We conduct two case studies to evaluate the effectiveness
of the proposed algorithms.

 0

 50

 100

 150

 200

 250

Youtube Wiki DBLP Pokec LiveJournal

A
ve

ra
ge

 T
im

e
(s

ec
)

Insertion
Deletion

Fig. 11. Runtime of the index maintenance algorithms

Norman W. Paton

Alvaro A. A. Fernandes

(a) structural diversity

K. Selçuk Candan

Maria Luisa Sapino

(b) structural diversity

Samuel Madden

Michael Stonebraker

(c) common neighbors

David J. DeWitt

Jeffrey F. Naughton

(d) common neighbors

Michael J. Franklin

Maarten de Rijke

(e) edge betweenness

Christos Faloutsos

Jiawwei Han

(f) edge betweenness

Fig. 12. Case Study on the DB subgraph of DBLP (τ = 2)

Exp-7: Case Study on DBLP. We extract a subgraph, namely
DB, from DBLP for case study. DB contains the authors in
DBLP who had published at least one paper in the database
and data mining related conferences. The DB subgraph con-

214

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

tains 37,177 vertices and 131,715 edges. We set the parameter
τ = 2 to compute the edge structural diversity, and then
use our algorithm to find the top-k edges on DB that have
the highest structural diversities. We implement two baselines
for comparison: one is based on the common neighbors (CN)
and the other is based on the betweenness (BT) of an edge.
Specifically, we compute the number of common neighbors
(betweenness) for each edge, and then identify the top-k
edges on DB with the largest number of common neighbors
(betweenness). Figs. 12(a-b) show two edge ego-networks
selected from the top-5 results obtained by our algorithm.
Figs. 12(c-d) and Figs. 12(e-f) show the ego-networks of the
top-2 edges obtained by CN and BT respectively.

Compared to CN, each edge ego-network obtained by our
algorithm contains many connected components, while the
edge ego-networks generated by CN have at most 2 connected
components. Moreover, for our algorithm, the authors of each
top-k edge tend to have diverse research interests. Such edges
may play the role of a “bridge” in connecting different research
communities. However, for CN, the authors of the top-k
edges typically work only in the same area. For example, in
Fig. 12(a), professor Norman W. Paton works in both database
and bio-informatics areas. Similarly, in Fig. 12(b), professor
K. Selcuk Candan’s research is also cross two areas including
database and multimedia. However, as illustrated in Figs. 12(c-
d), all the four professors focus mainly on the database area.
These results indicate that our algorithm could be used to find
the edges that maintain the connections with diverse structural
contexts. Such edges may play important roles to promote the
interactions between different communities in a network.

As shown in Figs. 12(e-f), the ego-networks obtained by
BT exhibit a barbell shape. The two authors of the edge
obtained by BT link two different tightly-connected subgraphs
and they typically share few common neighbors. Moreover,
the two authors in Fig. 12(e) (Fig. 12(f)) co-author few
papers, indicating a weak relationship. However, for the top-
k edges obtained by our algorithm, the two authors of an
edge usually have many common neighbors and also co-
author many papers, which suggests a strong relationship.
For example, in Fig. 12(e), professors Maarten de Rijke and
Michael J. Franklin co-author only one paper, and professors
Christos Faloutsos and Jiawei Han co-author two papers
according to the results in DBLP. However, in Fig. 12(a)
and Fig. 12(b), there are 102 and 56 papers that are co-
authored by professors Norman W. Paton and Alvaro A. A.
Fernandes and by professor K. Selcuk Candan and professor
Maria Luisa Sapino, respectively. These results indicate that
the semantics of structural diversity is totally different from
that of betweenness. In particular, our algorithm can find edges
that connect diverse social contexts and often exhibit strong
social relationships. However, the edges derived by BT tend to
connect two different communities and are likely weak links
(the end nodes share few common neighbors).

In addition, we also evaluate the performance of our algo-
rithm when the parameter τ ≥ 3. We find that when τ ≥ 3, the
structural diversity scores of most edges in DBLP are no larger
than 3, which results in that the top-k edges may have small
structural diversity values. As a consequence, the ego-networks
of some of the top-k edges may not reveal diverse structural
contexts, which reduces the effectiveness of our algorithm. To
avoid the top-k edges having small structural diversity values,

BANK

SAFE BUSINESS

FINANCIAL
FENDEAL

CHECKBOOK

CHECKING

CHECK

VAULT

ACCOUNT

BANKER

TELLER

FUND

ROBBERY

LOAN

MORTGAGE

MONEY

TRUST

DEPOSIT

SAVE

(a) top-1 edge ego-network

WOOD

FURNITURE

FIRE

BURN
PANEL

BUILD

ARCHITECTURE

CARPENTER

MILL

BLOCKS

BRICK

BLOCK
LADDER

TERMITE SIDING

DOOR

HOUSE

STAIRS

LOFT

CABIN

SHACK

TREE LODGE

LUMBER

TELLER

(b) top-2 edge ego-network

Fig. 13. Case Study on the word association network (τ = 2)

we recommend to set τ as a small constant (e.g., τ = 2) for
practical applications.
Exp-8: Case Study on a word association network. We
use a word association network downloaded from http://w3.
usf.edu/FreeAssociation/ for case study. This network contains
5,040 vertices and 55,258 edges, where each vertex denotes
a word and each edge connects two words indicating that
they are related or strongly associated. We set τ = 2 and
k = 2, and find the top-k edges with the highest structural
diversities. The results are shown in Fig. 13. The highest
structural diversity edge is (“bank”, “money”). We can see
that there are 6 different connected components in its ego-
network and each component represents a certain meaning of
the two words “bank” and “money”. The largest connected
component (red part) contains 6 words, and those words are
tightly related to the bank-account business. For the connected
component colored in pink, the words {“loan”, “mortagage”,
“federal”} are closely related to bank-lending business. For
the other components, each component contains at most 2
words, and represents a distinct context of words associated
with “bank” and “money”. For the edge (“wood”, “house”),
similar results can be obtained. These results indicate that our
top-k edge structural diversity search can be applied to find
different meanings for a pair of words, which is a fundamental
issue in natural language understanding. Additionally, we also
evaluate CN and BT on this word association network. Due
to the space limit, we do not show the ego-networks obtained
by both CN and BT. We find that the results are consistent
with our previous results on DBLP. Specifically, each top-k
edge obtained by CN can reflect a strong relationship between
two words, but it cannot reveal diverse meanings associated
with these two words. Similarly, each top-k edge derived by
BT generally connects two tightly-connected subgraphs, but
the two nodes of this edge often have few common neighbors,
suggesting a weak association relationship.

VII. RELATED WORK

Structural diversity on graphs. The concept of structural
diversity of a vertex was first introduced by Ugander et al. [1].
They showed that the user recruitment probability in an online
social network (Facebook) is determined by the number of
connected components in a user’s ego-network. Also, several
recent studies further confirmed that the structure of a user’s
ego-network does influence its social behavior in a social
network [17], [18]. Instead of studying the structural diversity
of a vertex, Dong et al. [3] introduced a concept of structural
diversity over a pair of vertices (u, v), in which the structural
diversity is defined as the number of connected components
of the subgraph induced by the common neighbors of (u, v).
They empirically showed that if a pair of vertices (u, v) has a
high structural diversity, then (u, v) has a high probability to

215

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

be connected. Unlike their work, our work focuses mainly on
how to efficiently compute the top-k edges with the highest
structural diversities. From a computational viewpoint, Huang
et al. [2] proposed several efficient online search algorithms to
find the top-k vertices with the highest structural diversities in
a network [2]. Chang et al. [4] proposed an improved algorithm
for the same problem based on a carefully-designed vertex
ordering. All the above mentioned techniques, however, only
focus on the structural diversities of vertices, and they cannot
be directly used for finding the top-k edges with the highest
structural diversities.
Listing all 4-cliques. Our work is closely related to the 4-
clique listing problem, where the goal is to list all 4-cliques
in a graph. In [5], Chiba and Nishizeki proposed a sequential
algorithm with the running time in O(k ·m · αk−2) to list all
k-cliques in sparse graphs, where α denotes the arboricity of
the graph. Recently, Danisch et al. [19] proposed an improved
algorithm with time complexity O(k ·m ·α(δ2)

k−2) to enumer-
ate all k-cliques, where δ (δ ≤ 2α) denotes the degeneracy
of the graph [6]. In this work, we show a close connection
between our problem and the 4-clique listing problem, and we
also make use of the 4-clique listing algorithm to construct an
index to support top-k edge structural diversity search.
Top-k query processing. Our work is also related to the
top-k query processing techniques, where the goal is to find
k objects with the highest rank based on some predefined
ranking function [20]. There are many studies on top-k query
processing for different kinds of applications, such as process-
ing distributed preference queries [21], keyword queries [22],
set similarity join queries [23], [24] and so on [25]–[29]. An
excellent survey on this topic was given in [20]. In general, the
key idea of many existing top-k query processing techniques is
that they process the candidates according to a particular order
and prune the search space based on some carefully-designed
upper bounds. Inspired by this general idea, we develop a new
dequeue-twice online search framework to identify the top-k
edges with the highest structural diversities.

VIII. CONCLUSION

In this paper, we study the top-k edge structural diversity
search problem, where the structural diversity of an edge
is measured by the number of connected components in
its ego-network. To solve our problem, we first propose a
new dequeue-twice online search algorithm with two upper-
bounding rules. Then, we propose a new index structure, called
ESDIndex, to efficiently support the top-k edge structural
diversity search. We show that the top-k edge structural
diversity search can be processed in O(k logm+ log n) time
with the ESDIndex, thus it is near-optimal. We also show
that ESDIndex uses O(αm) space and can be created in
O((αγ(n) + logm)αm) time, where α denotes the arboricity
of the graph. Since α is typically very small in real-life
sparse graphs, the ESDIndex based solution is very efficient in
both time and space overheads. Additionally, we also develop
efficient index maintenance techniques to handle dynamic
graphs. We conduct extensive experiments using five large
real-life networks, and the results demonstrate the efficiency,
scalability, and effectiveness of the proposed solutions.
Acknowledgement. This work was partially supported by (i) NSFC
Grants 61772346, 61732003, U1809206, 61836005, 61672358; (ii)

National Key R&D Program of China 2018YFB1004402; (iii) Beijing
Institute of Technology Research Fund Program for Young Scholars;
(iv) ARC Discovery Project Grant DP160101513. Guoren Wang is
the corresponding author of this paper.

REFERENCES

[1] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” Proceedings of the National Academy
of Sciences, vol. 109, no. 16, pp. 5962–5966, 2012.

[2] X. Huang, H. Cheng, R. Li, L. Qin, and J. X. Yu, “Top-k structural
diversity search in large networks,” VLDB Journal, vol. 24, no. 3,
pp. 319–343, 2015.

[3] Y. Dong, R. A. Johnson, J. Xu, and N. V. Chawla, “Structural diversity
and homophily: A study across more than one hundred big networks,”
in KDD, pp. 807–816, 2017.

[4] L. Chang, C. Zhang, X. Lin, and L. Qin, “Scalable top-k structural
diversity search,” in ICDE, pp. 95–98, 2017.

[5] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM Journal on computing, vol. 14, no. 1, pp. 210–223, 1985.

[6] D. Eppstein, M. Löffler, and D. Strash, “Listing all maximal cliques in
large sparse real-world graphs,” ACM Journal of Experimental Algorith-
mics, vol. 18, 2013.

[7] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter, “Arboricity, h-index,
and dynamic algorithms,” Theor. Comput. Sci., vol. 426, pp. 75–90,
2012.

[8] M. Ortmann and U. Brandes, “Triangle listing algorithms: Back from
the diversion,” in ALENEX, 2014.

[9] C. S. J. A. Nash-Williams, “Decomposition of finite graphs into forests,”
Journal of the London Mathematical Society, vol. 39, no. 1, pp. 12–12,
1964.

[10] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
PVLDB, vol. 5, no. 9, pp. 812–823, 2012.

[11] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” SIGMOD, 2014.

[12] R.-H. Li, L. Qin, J. X. Yu, and R. Mao, “Influential community search
in large networks,” PVLDB, vol. 8, no. 5, pp. 509–520, 2015.

[13] R. Li, L. Qin, J. X. Yu, and R. Mao, “Finding influential communities
in massive networks,” VLDB J., vol. 26, no. 6, pp. 751–776, 2017.

[14] R.-H. Li, Q. Dai, L. Qin, G. Wang, X. Xiao, J. X. Yu, and S. Qiao,
“Efficient signed clique search in signed networks,” in ICDE, 2018.

[15] R.-H. Li, Q. Dai, G. Wang, Z. Ming, L. Qin, and J. X. Yu, “Improved
algorithms for maximal clique search in uncertain networks,” in ICDE,
pp. 1178–1189, 2019.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms (3. ed.). MIT Press, 2009.

[17] Z. Fang, X. Zhou, J. Tang, W. Shao, A. C. M. Fong, L. Sun, Y. Ding,
L. Zhou, and J. Luo, “Modeling paying behavior in game social
networks,” in CIKM, pp. 411–420, 2014.

[18] H. Ma, “On measuring social friend interest similarities in recommender
systems,” in SIGIR, pp. 465–474, 2014.

[19] M. Danisch, O. Balalau, and M. Sozio, “Listing k-cliques in sparse real-
world graphs,” in WWW, pp. 589–598, 2018.

[20] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys, vol. 40, no. 4, p. 11, 2008.

[21] K. C.-C. Chang and S.-w. Hwang, “Minimal probing: supporting expen-
sive predicates for top-k queries,” in SIGMOD, pp. 346–357, 2002.

[22] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: top-k keyword query
in relational databases,” in SIGMOD, pp. 115–126, 2007.

[23] C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,”
in ICDE, pp. 916–927, 2009.

[24] Y. Kim and K. Shim, “Parallel top-k similarity join algorithms using
mapreduce,” in ICDE, pp. 510–521, 2012.

[25] F. Bi, L. Chang, X. Lin, and W. Zhang, “An optimal and progressive
approach to online search of top-k influential communities,” Proceedings
of the VLDB Endowment, vol. 11, no. 9, pp. 1056–1068, 2018.

[26] R.-H. Li and J. X. Yu, “Scalable diversified ranking on large graphs,”
IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 9,
pp. 2133–2146, 2013.

[27] L. Qin, J. X. Yu, and L. Chang, “Diversifying top-k results,” Proceedings
of the VLDB Endowment, vol. 5, no. 11, pp. 1124–1135, 2012.

[28] Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks,”
in KDD, pp. 1039–1048, 2010.

[29] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X.
Parreira, and G. Weikum, “Efficient top-k querying over social-tagging
networks,” in SIGIR, pp. 523–530, 2008.

216

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:23:14 UTC from IEEE Xplore. Restrictions apply.

